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Abstract-The validity and the accuracy of a stress determination method based on fault-slip data inversion 
depends on how the misfits are defined and processed in the inversion procedure. To characterize major features of 
fault-slip data, angular misfits are simulated for both inherited faults and conjugate faults. For one case, a set of 
4000 ‘perfect’ fault-slip data was built for the inherited fault type (the general case), with planes randomly 
distributed on a unit sphere and slip vectors which perfectly fit a given stress tensor. Likewise, a set of 200 ‘perfect’ 
fault slip data was built for the conjugate fault type, where variations simply occur around two poles. These 
synthetic fault slip data sets were modified by adding variations of orientations, for both fault planes and slip 
vectors, according to a Gaussian-type distribution. After re-calculating the stress tensor, we examined the 
distribution of angular misfits and residuals of five minimization functions (depending on the inversion method 
adopted), and we evaluated the corresponding variations of the stress tensor. 

We found that the distribution type of angular misfits is exponential (or half-Gaussian) for both inherited and 
neoformed fault populations. Iterative or grid search methods are supposed to correspond to a x2 test. The 
application of a x test to the stress determinations demands that misfits be described as angular misfits which follow 
a Gaussian law. Thus, to avoid a theoretical contradiction in these iterative or grid search methods, one must adopt 
a sum of squares misfit criterion as a minimization function. In that the angular misfits follow an exponential law, 
the function to minimize the sum of the absolute values of misfits can be also meaningful for the stress inversion. 

The four minimization function misfits considered here are also exponential in type, so that our conclusion 
apparently contradicts the assumption underlying the iterative linear inversion methods derived by least squares 
method. The use of least squares criteria in fault-slip data inversion implies that the misfits of the minimization 
function should follow the Gaussian law. Because the three components of residual vectors follow a Gaussian 
distribution, we suggest that it is theoretically sound to construct elementary minimization functions using them. 
The usual form of minimization functions is the coalescence of these three elementary minimization functions. The 
total inversion method is also consistent with it in that its minimization function is the sum of three elementary 
minimization functions constructed in three angular differences which follow the Gaussian law. The distribution of 
the minimization function misfits of the direct inversion method is quite different in type, and can be explained by a 
&distribution, which reflects the physical characteristics of the criterion adopted. 

We evaluated variations in the determined stress tensors as a function of the data dispersion and ‘filtering’ misfit 
angle. Under the conditions adopted in this paper, the stress solutions depend on the dispersion parameters, and are 
stable and vary little for smaller data dispersions. The ‘filtering’ misfit angle between 45” and 90” is appropriate to 
reconstruct the assumed stress tensor by including as many meaningful fault-slip data as possible. Copyright 0 
1996 Published by Elsevier Science Ltd 

INTRODUCTION 

In the process of stress inversion of fault-slip data for a 
given tectonic event, the determination of a stress tensor 
contains a certain amount of error, and the fit between all 
the data and the single computed stress tensor is an 
approximation. This common observation is accounted 
for by (1) the uncertainties of structural measurement 
values, (2) some geometrical characteristics of fault slips, 
(3) the basic mechanical assumptions which lead to 
neglect of stress perturbations in the faulted rock mass, 
and (4) the adopted specific characteristics of each stress 
inversion technique. 

Since Carey & Brunier (1974) presented first the 
possibility of stress inversion from fault-slip data, 
numerous methods for determining stress tensors using 
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fault-slip data or focal mechanisms of earthquakes have 
been proposed with various approaches (Angelier 1975, 
1979, 1984, 1990, 1991, Carey 1976, Etchecopar et al. 
1981, Angelier et al. 1982, Armijo et al. 1982, Gephart & 
Forsyth 1984, Michael 1984, Carey-Gailhardis & Mercier 
1987, Reches 1987, Choi 1991, Fleischmann & Nemcok 
1991, Yin & Ranalli 1993). An overview of this 
application of solid mechanics to the stress determination 
in brittle tectonics was presented elsewhere (Angelier 
1994; see also Hancock 1985). All these methods are 
based on the stress-slip relationship described by Wallace 
(1951) and Bott (1959); the validity of the basic 
assumptions was discussed in detail by Dupin et al. 

(1993) and Pollard et al. (1993). In detail, the misfit 
criterion functions of different methods differ widely and 
so do numerical techniques: the iterative or grid search 
(Carey & Brunier 1974, Angelier 1975, 1984, Gephart & 
Forsyth 1984), the direct inversion (Angelier 1990, 1991) 
and the iterative linear inversion (Choi 1991). Statistical 
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Fig. 1. Diagram showing geometry of a fault-slip and corresponding definitions used in this paper. (a) Geometry of fault 
plane, slickenside lineations and stresses. n: unit vector normal to the fault plane. s: unit slip vector on fault plane. CJ: stress 
vector exerted on this fault plane. oN: normal component of u (normal stress). T: tangential component of g (shear stress). (b) 
Geometry of fault and conventional measurements in Qxyz reference coordinate system. d: azimuth of dip direction of fault 

plane. p: dip of fault plane. i: pitch of slickensides (modified from Angelier et al. 1982). 

assumptions also differ, although most authors adopt the 
least squares criterion (i.e. the sum of the squares of the 
misfit criterion values is minimized). In all cases, one 
assumes that the fault-slip direction should coincide with 

that of shear stress, that the stress state was uniform, and 
that neither rotation nor volume change occurred during 
the corresponding tectonic event. The general case is 
shown in Fig. l(a), with an angular misfit between the 
observed slip vector, s, and the shear stress, T, induced by 
the average stress tensor solution of the problem. This 
misfit is made as small as possible, but exists due to the 
errors and uncertainties mentioned above. 

The main purpose of this paper is to describe and 
interpret distribution types of angular misfits and their 
statistical aspects in the stress inversion, based on 
extensive computer-assisted modelling. Most fault-slip 
data sets collected in the field have limited data numbers 
(e.g. twenty to sixty) and limited ranges of fault 
orientations. In order to eliminate biases due to inhomo- 
genous distribution, we study statistical characteristics of 
synthetic fault-slip data sets, which can display all 
possible orientations, and whose data numbers can be 
much larger than natural ones. The widely accepted use 
of the least squares method implies, albeit often in a tacit 
way, that the residuals of minimization functions are 
distributed according to the Gaussian law (Linnik 1963). 
Note, however, that some fault-slip data may have 
angular misfits far beyond the acceptable level. The 
distribution may differ from the Gaussian model if such 
‘anomalous’ data are numerous. These data can be 
rejected if there are reasons to believe that they result 
from mistakes in observation or classification of mea- 
sured fault-slip data, or belong to a distinct stress regime 
(for the separation of stress regimes not discussed herein, 
see Angelier & Manoussis 1980 and Angelier 1984). 

In the stress inversion procedure, we meet a problem: 
what is the largest misfit angle of fault-slip data 
acceptable to reconstruct the tectonic stress tensor at a 
site? Because we assume a fixed reduced stress tensor in 
our computer modelhng, we explore this problem by 
evaluating variations of stress tensors as a function of 
data dispersion and ‘filtering’ misfit angle. We can thus 
discuss the conditions needed to recover the assumed 
stress tensor for modified fault-slip data sets. Finally, 
considering the case of a relatively homogeneous stress 
regime, it is necessary to address the problem of the real 
distribution of misfits obtained for a given inversion 
criterion as a function of usual data uncertainties 
expected in a fault-slip data set. The distribution of 
misfits is also examined for five typical minimization 
functions listed in Table 1, and we will discuss their 
implications in stress inversion. 

ANGULAR DATA AND UNCERTAINTIES 

Figure l(b) illustrates the geometry of the fault slip, 
which depends on three angles: the dip direction (d), the 
dip (p) of the plane, and the pitch (i) of the fault striations. 
Instrumental uncertainty may be as small as 1-2” with 
high quality equipment, whereas the observational 
uncertainty commonly averages 5-lo”, depending on 
numerous factors. The three angles d, p and i are 
considered independent in the first approximation. 
However, for instance, a small variation in dip (p) of a 
nearly vertical plane may result in an opposite dip 
direction, hence a large change in dip direction (6). Such 
effects have little influence in statistics, although they 
must be carefully considered in particular cases. 

Figure 2 illustrates some features that significantly 
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Fig. 2. Examples of particular fault geometries and their influence on strike, dip and pitch angles. (a) Variations around slip 
vector for a normal fault causing changes in d. (b) Variations around slip vector for a strike-slip fault, causing changes in p. (c) 
Variations perpendicular to the slip vector for a normal fault, causing changes in p. (d) Variations perpendicular to the slip 

vector for a strike-slip fault, causing changes in d. 

contribute to data dispersion, as far as the shape of a fault 
plane is concerned. The changes around the slip vector 
(e.g. big grooves) may result in variations in d (which 
imply smaller changes in p and i) for a dip-slip fault (Fig. 
2a), or p for a strike-slip fault (Fig. 2b). The changes 
perpendicular to the slip vector can cause variations in p 
for a dip-slip fault (Fig. 2c), and d for a strike-slip fault 
(Fig. 2d). For the oblique slip faults, the variations are 
more complicated and there is a wide range of possible 
variations, all angles d, p and i being affected in varying 
proportions. As Fig. l(b) suggests, these three angles vary 
from 0 to 360” (dand i), or 0 to 90” (p). The corresponding 
uncertainties range between - 180” and + 180” (Ad & AZ) 
or - 90” and + 90” (Ap). 

Now, what is important is which type of distribution 
law better describes the dispersion of fault-slip data. A 
Fisher distribution (Fisher 1953, Mardia 1972) is appro- 
priate to describe the clusters of parallel features (e.g. 
bedding planes, foliations, lineations and possibly dikes) 
on a unit sphere, and a Watson distribution (Watson 
1966) is suitable for the description of the girdle-type 
distribution of these features. For instance, considering a 
set of the conjugate faults, one group of this conjugate 
pair can be described by a Fisher distribution, but both 
fault groups cannot be treated at the same time by this 
polar distribution. The fault planes and their slip vectors 
are not parallel features (Figs. Sa & b), so that the three 
angles of fault-slip data are dispersed and mutually 

independent, although they constrain a reduced stress 
tensor. As for the data dispersion function, it is assumed a 
priori that it must define a distribution with the greatest 
frequency for smallest angular misfits, which is the case 
for the Gaussian, the von Mises and the Cauchy 
distributions (for instance). A von Mises distribution, 
suitable for circular random variables (Mardia 1972), is 
also applicable to describe these variations; its general 
shape is quite similar to that of a Gaussian law. Adoption 
with numerous actual data sets suggests that where a 
single tectonic regime is involved, the distribution of 
misfit angles is compatible with such a distribution, and 
does not allow distinction between these functions. We 
consequently adopt a Gaussian (or normal) distribution 
to describe the data dispersion of these mutually 
independent angular data (Fig. 3), since it fits examples 
of data distributions collected in actual sites well and is 
easy to apply. In addition, we consider that to be 
consistent with the assumptions underlying the stress 
inversion methods, it is better to adopt a Gaussian-type 
law as a data dispersion function. The Gaussian distribu- 
tion is defined as follows: 

f(x) = ce~(x~~~2~20z with c = & (1) 

whereflx) is the frequency of the value x, p is the average 
(p=O herein), and e is the standard deviation. For the 
clarity of description, we apply this function to data 
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Fig. 3. Gaussian-type distribution of data uncertainties. (a) Data uncertainties of dip direction of fault (Ad) and pitch of 

slickenside lineations (AZ). (b) Those of dip of fault (Ap). The parameter c is defined in equation (1) of text. 

modifications in terms of discrete distribution with a class 
width of 1”. 

As mentioned before, the use of Gaussian distributions 
requires that the large errors are considered exceptional. 
This is the case for monophase and homogenous fault- 
slip data, consistent with a single stress tensor with the 
range of approximations and uncertainties. The case of 
polyphase fault sets is always decomposable into analyses 
of monophase subsets (Angelier & Manoussis 1980). 
Note also that depending on the minimization criterion 
adopted, the angular misfit is attributed to the variations 
in the slip vector (Fig. 4a) or to the three angles 
considered solely (Fig. 4b), the latter case being repre- 
sented in the total inversion method (TOTINV, see Table 

1). 

INVERSION CRITERIA 

Because the problem of misfits cannot be examined 
without regard to the inversion method, it is indispen- 
sable to examine some criteria. Table 1 summarizes the 
minimization functions and their criteria (or estimators) 
already presented with the corresponding references. 

Some minimization functions simply refer to the angle 
between the observed slip vector s and calculated shear 
stress r(R4DT or R4DS & DAGUR, see Table 1). Other 
functions include, in addition, the shear stress modulus 
Irl, which implies a dimensional parameter whose 
definition depends on the form of the reduced stress 
tensor adopted (INVD and BURIAT, see Table 1). The 
total inversion method minimizes the variations of all 
angles d, p, i between a ‘perfect’ theoretical fault slip and 
measured structural values (TOTINV, see Table 1 and 
Fig. 4b). 

The angular misfit, 6, corresponding to the angle (s, T), 
which plays the major role in most minimization 
functions, has been considered as the main misfit 
criterion by most authors (e.g. Carey & Brunier 1974, 
Angelier 1984, Choi 1991). This implies, firstly that the 
uncertainties affecting fault-plane orientations are con- 
sidered negligible with respect to the uncertainties 
affecting the pitch of the slip vector (Fig. 4a, R4DT and 
R4DS & DAGUR in Table l), in contrast to the more 
complex angular misfit criterion of the total inversion 
(Fig. 4b, TOTINV in Table 1). It also implies that the 
relative magnitude of the shear stress, 7, is not taken into 
account, in contrast with the direct inversion (INVD) in 

a b 
Fig. 4. Range of angular misfits. (a) Plane considered perfect, so that the misfit concerns solely the direction of the slip vector 

(most methods). (b) Errors on angles d, p and i are all considered (TOTINV, see Angelier et al. 1982). 
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Table 1. Minimization functions and their misfit criteria (or estimators) examined in this paper 

Methods Misfit criteria 

TOTINV Angelier et al. (1982) 

R4DT Angelier (1984) 

R4DS Angelier (1984) 

DAGUR Choi (1991) 

BURIAT Choi (1991) 

INVD Angelier (1990) 

c, = [(~)2,(z$+(~)y 

C3=min[tan& l],(As=s--t/lrlcosS) 

C2 = sin 612 

As, =s-z/lrl 

A% = ITIS-T 

C,= lb-~1, (AS=&-T) 

Minimization functions 

s = [(!++(E$)2+(k$y] 

S3 = X min[tan* 6, l] 

S2 = Z sin’ 612 

SSI = Z((Tx/l~l - sJ* + (TJITI - sJ’ + (T=/ITI - sJ2] = 4 LY sin* 6/2 

SS2 = c[(Tx- iTISx)* + (T,.- lT1~3,.)~+ (&- /T\s~)*] = 4 Zlr12 sin’ 6/2 

Sq= z(lh-Tl)2 = x[A2 + lT1*-221Tl CDS d 

Table 1 (see also BURIAT). It is necessary to distinguish 
the angular misfit, which affects the angle (s, T), and the 
misfit criteria, which affect the minimization functions 
(Table 1). This distinction is especially important for 
criteria that depend on the relative stress magnitude (see 
Angelier 1990 for complete discussion). Other differ- 
ences, which deal with numerical or analytic techniques, 
have little interest in the analysis of misfits discussed 
herein. 

CONSTRUCTION OF SYNTHETIC DATA SETS 

In order to analyze the effects of data dispersion, we 
first built a perfect data set and then introduced a 
geometrical dispersion. The synthetic data sets were 
obtained by generating fault planes in a half-space and 
computing their slip vectors as a function of an assumed 
stress tensor. Two situations were considered: the case of 
pre-existing planes of weakness which may have any 
orientation (for instance, joints, bedding planes and pre- 
existing fault planes, etc.) and undergo shear reactivation 
under the stress regime considered (‘inherited faults’; see 
Fig. 5), and the case of conjugate shear planes, which 
develop under a given stress regime and thus have 
particular orientations relative to the stress axes (‘neo- 
formed faults’ or contemporaneous faults; see Fig. 6). 

Note that because the orientation of the stress axes can 
be chosen arbitrarily, our statistical analysis is carried out 
in the coordinate frame defined by the stress axes 
themselves. For the sake of simplicity, we adopt constant 
stress orientation throughout this paper: o1 (maximum 
compressive stress) in E-W direction (x-axis), and c3 
(minimum compressive stress) vertical (z-axis). The 
observed angles for each fault (Fig. 1 b) are measured 
with reference to the horizontal plane. As a result, the 
effects of dispersion on the three angles d, p and i are not 
similar depending on the orientations of stress axes and 
fault patterns. Because a complete presentation of the 
effects of dispersion for ‘normal’, ‘strike-slip’, ‘reverse’ 
and ‘oblique’-type stress regimes requires a long descrip- 
tion, we simply consider in this paper the case with 
vertical ‘~3 solely (Figs. 5 & 6). 

Figure 5 illustrates the case of inherited faults with a 
large variety of orientations: 4000 fault planes were 
constructed by applying a grid on a Schmidt net and the 
corresponding strike and dip angles were rounded in 

degrees. We then computed the shear direction (and 
sense) for each fault according to the Wallace-Bott 
hypothesis (i.e. the slip occurs in the direction and sense 
of the shear stress induced by the single stress tensor 
adopted). We thus obtained a synthetic set of ‘perfect’ 
inherited faults; that is, these 4000 fault-slip data (Fig. 5a 
& b) have no misfit in terms of the angular deviation 
between measured slip vector and determined shear stress 
vector. The determination of the slip vector for each fault 
is made with the stress axes illustrated in Fig. 5, so that 
the components of the stress vector, Q, applied on the 
plane of unit normal n, are given by: 

[;]=[i ; a][iz] (2) 

The components of the shear stress are computed as 
the differences between the corresponding components of 
the applied and normal stress vectors: 

G = u_z - (nxux + nyuy + nzuz)n, (3) 

Finally, the pitch of the computed slip is determined as 
a function of the shear stress, r, with reference to the 
horizontal line in fault plane (Fig. 1). To further simplify 
the process, we considered a particular relationship 
between principal stresses, that is, a stress difference 
ratio Q = (Q-c~)/(c~ -us) (Angelier 1975) of 0.3 (e.g. 
cl = 1, c2 = 0.3, u3 = 0). Modifying the value of CD would 
result in different slips for most faults. 

Figure 6 illustrates the case of neoformed conjugate 
faults. .Note first that a perfect set of conjugate faults 
includes two fault orientations solely (Fig. 6b), and 
second that slips on such faults are not influenced by 
variations in the stress difference ratio @. However, 
because dispersion may occur, variations around theore- 
tical orientations are allowed. In order to reproduce this 
dispersion, we built 200 fault planes by modifying the 
fault orientations around the theoretical ones according 
to the Gaussian law (Fig. 6c), and we determined each 
shear stress to obtain the ‘perfect’ slips (Fig. 6d). Because 
deviations from the two (perfect) orientations of con- 
jugate planes have been imposed, the stress difference 
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Fig. 5. Poles and striation axes for inherited fault populations. Theoretical set of (a) fault plane poles and (b) slip vector 
orientations. (c, d) Fault-slip data set from (a) and(b), respectively modified by a geometrical dispersion (c: fault poles, d: slip- 

vector orientations). c = 4% is considered. 

ratio 0 plays a role in the last step except for the few 
planes which effectively contain the 02 axis, as theoretical 
conjugate faults should. 

INTRODUCTION OF DATA DISPERSION 

Dispersion occurs as the result of numerous factors 
(measurement uncertainties, stress inhomogeneity, irre- 
gularities on fault surfaces, fault interaction, deformation 
due to a later tectonic event, etc.). To simulate this 
dispersion, following the construction of the ‘ideal’ sets 
described above with 4000 (Figs. 5a & b) and 200 (Figs. 

6c & d) ‘perfect’ fault-slip data, we applied individual 
variations of angles d, p and i to each datum. The 
amplitude of dispersion is calculated for a class width of 
1 o by adopting different values for parameter c (equation 
l), as illustrated in Fig. 3. The variations introduce 
individual misfits, but because the populations are large, 
this dispersion process has relatively little effect on the 
general agreement between the imposed and the inferred 
stress tensors (see next section). Finally, we studied the 
distribution of these misfits, according to several criteria 
given by various authors (Table l), in order to determine 
the relationships between data dispersion and misfit 
distribution (see later section). 
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Fig. 6. Schematic diagram showing conjugate faults and modified faults. (a) Block diagram showing a pair of conjugate 
reverse faults. (b) Fault-plane poles and slip-vector orientations for faults of (a). (c and d) Fault-plane poles (c) and slip vectors 
(d) of 200 faults constructed by modifying the fault planes and calculating their slip vectors based on the adopted stress tensor. 
(e and f) Fault-plane poles (e) and slip vectors (f) of modified fault set after dispersion of the theoretical fault set. c = 4% is 

considered. 
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The resulting diagrams of data modifications following 
a Gaussian law (Fig. 3) are shown in Figs. 5(c) and (d) 
(poles to faults and slip vectors respectively) for inherited 
faults and in Figs. 6(e) and (f) (same significance) for 
conjugate faults. The regular distribution of the initial 
diagrams is of course altered, as shown by comparisons 
between Figs. 5(a) and (c) (for fault planes) and between 
Figs. 5(b) and (d) (for slip vectors) in the case of inherited 
faults, or between Figs. 6(c) and (e) (for fault planes) and 
between Figs. 6(d) and (f) (for slip vectors) in case of 
conjugate faults. 

Due to the boundary interactions between d, p, i and 
their angular changes Ad, Ap, Ai, it is indispensable to 
consider particular cases (e.g. the reversal of the dip 
direction d when an initial dipp later becomes larger than 
90” after modification and all the modified structural 
values are transformed in the usual ranges: 0” I d < 360”, 
0” I p 590” and 0” _( i ~360”). Note that d*, p*, and i* 
designate the dip direction, dip, and pitch of the modified 
faults in Figs. 8-10. 

INFLUENCE OF DATA DISPERSION ON 
DETERMINATION OF STRESS TENSORS 

How does the dispersion of fault-slip data affect the 
resolution of determined stress tensors? We try to 
determine this influence with respect to the ‘filtering’ 
misfit angles (denoted by N (s, T) in Fig. 7) and the 
parameter c. In stress inversion, fault-slip data with an 
angular misfit larger than a certain angle are generally 
considered geologically unacceptable and eliminated; the 
filtering misfit angle is this maximum misfit angle of fault- 
slip data in stress inversion. In general, fault-slip data 
with very large angular misfits (e.g. 90” to 180”) are not 
used in stress inversion. One generally assumes that they 
result from mistakes in observation or classification of 
measured fault-slip data in terms of distinct stress 
regimes, although their application to the stress inversion 
is possible in a statistical sense. Angelier (1979), Gephart 
(1990) and Choi (1991) considered 45” as a realistic 
filtering misfit angle for including as many meaningful 
fault-slip data as possible in stress inversion. 

To find whether the modified sets are still compatible 
with the initially adopted stress tensor and to find the 
appropriate filtering misfit angle acceptable for the 
recovery of the assumed stress tensor, we tried to 
determine stress tensors according to the data dispersion 
parameters, c, and the filtering misfit angles such as 20”, 
45”, 60”, 90”, 120” and 180”. For this, we carried out 
inversion of these modified data sets with the DAGUR 
and BURIAT methods (Choi 1991). Figure 7 illustrates 
the variations of principal stress axes, ci (denoted by 
angles Agi corresponding to the maximum deviation 
between the assumed and new determined principal 
stress axes) and those of stress difference ratios, 0 
(denoted by values A@); the numbers of data applied to 
the stress inversion are expressed in % with solid lines in 
figures of A@. 

Figure 7 shows first that the stress determination 

depends on data dispersion parameters, c (it is conspic- 
uous for the neoformed fault sets); for low values of c 
(e.g. c (3%), the change is great as a function of c, while 
for large values of c (e.g. c > 6%), there is little sensitivity 
to c values. Second, there is a large contrast between fault 
types. Angular variations of principal stress axes remain 
smaller than 5” for inherited fault sets, whereas they reach 
about 40” for the neoformed fault set of c = 1.5% (Fig. 7). 
The variation of the stress difference ratios, @, remains 
stable for c >4% with the inherited fault populations, 
but may be larger for the conjugate fault populations. 
Both effects are easily explained by considering that fault 
slips oblique to all stress angles constrain the stress tensor 
much better (conjugate faults are by definition parallel or 
approximately parallel to one axis). Third, stress deter- 
minations are influenced by the filtering misfit angle. 
When it is small (e.g. 20”), modified fault-slip data sets 
may not fit the assumed stress tensor well. If the filtering 
misfit angle is 45”-90” (and c is greater than 4%), they fit 
the assumed stress tensor better. For these filtering angles 
and with c > 3%, approximately 90% of fault-slip data 
are comprised in the stress inversion. Finally, these 
differences are also influenced by the adopted stress 
inversion methods. The stress tensor variations deter- 
mined by DAGUR are slightly smaller than those by 
BURIAT especially for c > 2%. In summary, under the 
conditions adopted in this paper, the solutions depend on 
the data dispersion, but they are more or less stable for c 
> 4%. A filtering misfit angle of about 45”-90” is more 
appropriate to recover the assumed stress tensor than 
smaller or greater ones. 

INTERACTION OF MISFITS WITH DATA 
UNCERTAINTIES 

Let us consider the effects of data dispersion, which of 
course require reference to a given criterion (Table 1) in 
order to determine the misfits. The angular misfit 6 is 
determined with respect to the best-fit stress tensor 
(which in our case is the same as the adopted stress 
tensor as mentioned above). Considering each criterion 
for misfit between measured slip vector and determined 
shear stress vector (as listed in Table l), we determined 
the theoretical shear direction on each plane, hence the 
individual misfit. Again, a stress tensor being given, it is 
important to distinguish the misfit estimator, which 
depends on the criterion adopted, and the misfit angle S, 
which does not (except for the total inversion). The 
frequency distribution of misfit angles are described in 
histograms of Figs. 8 & 9, with a class width of 1 O. 

Figure 8 (for the inherited faults of Figs. 5c & d) and 
Fig. 9 (for the neoformed faults of Figs. 6e & f) illustrate 
the distributions of angular misfits for typical values of c. 
Better statistical determinations are obtained for the 
inherited faults, due to the larger number of data (4000 
instead of 200). Analysis of these histograms reveals that 
the frequency distribution of angular misfit can be 
satisfactorily accounted for by an exponential relation- 
ship: As) = aembd. 
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Fig. 7. Variations of stress tensors according to data dispersions and filtering misfit angles. The variations of principal stress 
axes are found in terms of filtering misfit angles, - (s, 7) and parameters, c, according to two stress inversion methods 

DAGUR (the same minimization function as R4DS) and BURIAT (Choi 1991). 
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Changes in class width do not modify this conclusion. 
With a class width of 1” (Fig. 8), numerical adjustments 
resulted in the following values: b = 1.638c, and 
a = 1.430~ = 0.874b; one thus obtains: 

f(s) = 0.874? 
0.6105 

with #?=------ 
c (4) 

Figure 8 also shows the numerical fit of the same data 
with a symmetric distribution function corresponding to 
the relationshipf(a) = aeVbo2(S 2 0): 

f (6) = -&e-d’f2” 

The fit with a half-Gaussian distribution is almost 
equally satisfactory as that with an exponential distribu- 
tion. 

We also examined distributions of the values for 
minimization function misfits with various functions in 
Table 1 (Fig. IO). This determination is shown for the 

f(s) = 0. 140en’“‘A 

f(s) = 0.116e o”lnm2 

criteria of six different methods, and the frequency 
distribution modes are analyzed in Fig. 11. Summarizing, 
for the three minimization functions (R4DT, R4DS & 
DAGUR, and BURIAT), a good fit is obtained with a 
negative exponential distribution (the same as for the 
angular misfits). For the total inversion (TOTINV), the 
histogram is so narrow that the distribution type remains 
undetermined (Fig. lOe), but we assume it is similar to 
that of the upper minimization functions. Note that three 
components, Ax, Ay, AZ, of the residual vectors (denoted 
by As, Asi or Asz in Table 1) for these four minimization 
functions follow a Gaussian law. The misfit distribution 
of the direct inversion method (INVD) is different in 
type, and could be satisfactorily fitted to a p-distribution 
(better than Gaussian or Maxwell distributions, see Fig. 
1 Id). Note that this difference in frequency distribution 
mode corresponds to a difference in nature of the 
function, which takes the relative shear stress magnitude 
into particular account for the direct inversion method 
(Angelier 1990). 



Distribution of angular misfits in fault-slip data 1363 

Conjugate Faults 

%? 0 

(b) 

Fig. 9. Distribution of angular misfits for conjugate fault populations. c: 2-4-&10% for a, b, c, d, respectively. Dispersion of 
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DISCUSSION AND CONCLUSION 

In the stress inversion of fault-slip data, an important 
problem consists of dealing with the angular misfits, 
determining a best-fit stress tensor with a data set 
perturbed by many factors, and determining how far 
data uncertainties affect the resolution of the stress tensor 
determinations. We tried to find some answers by 
simulating the angular misfits as a function of data 
dispersion, based on analyses of synthetic fault-data sets 
which allow considerations of all possible orientations 
(which is not the case for real data sets). 

According to the determinations of angular misfit 
distribution modes (Figs. 8 8z 9), we conclude that an 
exponential frequency function (or maybe a half-Gaus- 
Sian one) accounts well for the angular misfits with 
inherited fault populations. For conjugate fault popula- 
tions, the distribution of angular misfits is thought to be 
exponential, as is the case for inherited faults, according 
to a numerical fit between observed and theoretical 
distributions. These conclusions are not only obtained 

for the synthetic data sets discussed in this paper but also 
for real data sets, as the example in Fig. 12 shows. We 
consider angular misfit in terms of shear stress-slip vector 
relationship on a fault (Fig. 4a). However, it must be 
pointed out that we can also calculate the angular 
difference i-i* (e.g. Yin & Ranalli 1993), including 
negative values, which enables a Gaussian distribution 
to be drawn (Fig. 12b). In any case, the resulting 
distribution mode of angular misfits is the same as the 
distribution mode usually observed from real data sets 
(e.g. Armijo et al. 1982, Carey-Gailhardis & Mercier 
1987, Gephart 1990 and see Fig. 12a). 

Concerning the iterative or grid search methods which 
aim at minimizing a simple function of the stress-slip 
angle (Carey & Brunier 1974, Angelier 1975, 1984, 
Gephart & Forsyth 1984), the determination procedure 
of the best-fit stress solution is supposed, albeit often in 
a implicit way, to correspond to a x2 test with one degree 
of freedom. Effectively, one determines in most cases a 
stress tensor for which the sum of the squares of misfits 
described by angular misfits is minimum. The applica- 
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1366 P.-Y. CHOI, J. ANGELIER and B. SOUFFACHI? 

tion of a x2 test to the stress determinations demands 
that misfits described in terms of angular misfits follow a 
Gaussian law. In order that theoretical contradiction 
does not occur in these iterative or grid search methods, 
the sum of the squares of the angular misfits should be 
adopted as a minimization function. Note, however, 
that the minimization function might also ignore this 
aspect. In that the angular misfits do not follow a 
Gaussian law but an exponential law (or a half- 
Gaussian one), the function to minimize the absolute 
value of the sums of misfits described by angular misfits 
can also be meaningful for the stress inversion (Gephart 
1990). 

The reconstructed distribution of four minimization 
function misfits considered here (R4DT, R4DS & 
DAGUR, BURIAT and TOTINV, see Table 1) is also 
consistent with an exponential law. As for iterative linear 
inversion methods, one determines a stress tensor based 
on the stress equations derived from the minimization 
functions by the least squares method. For the least 
squares method, one supposes that the misfits of the 
minimization function follow the Gaussian law, while 
our conclusion may seem contrary to it. Knowing that 
the three components, Ax, Ay, AZ, of the residual vectors 
of misfit criteria follow a Gaussian distribution (Fig. lo), 
the minimization functions constructed in terms of each 
component of residual vectors seem more theoretically 
sound (e.g. SSi, = E(rX/lrl -sJ2, SSi, = E(r,/lrl -s,)~, 

SSIZ = C(r,/lrI -sJ2 as seen in the minimization 

function form of DAGUR, see Table 1); this type of 
minimization function is named an elementary minimiza- 
tion function. Now, we can see that the usual form of 
minimization functions is the coalescence of these three 
elementary minimization functions (e.g. DAGUR and 
BURIAT, Choi 1991). The total inversion (TOTINV) 
follows this characteristic in that its minimization 
function is the sum of the three elementary minimization 
functions constructed in three angular differences d-d*, 

p--p*, i-i* which f o ow the Gaussian law (Figs. 8-10). 11 
The distribution of misfits of the direct inversion 

method (INVD) is quite different in type (Figs. 1Of and 
1 Id), and may be explained by a P-distribution. In fact, 
the simple minimization by the angle (s, T) results in the 
largest number of smaller misfits, for small angles are 
abundant provided that the fault-slip data set is homo- 
geneous. The minimization of both angle and difference 
between the maximum possible shear stress and the 
computed shear stress results in the particular shape 
shown in Figs. 10(f) and 11(d), for the shear stress 
corresponding to the best possible fit generally differs 
markedly from the largest possible shear stress, 
i(ai - 0s). The P-distribution obtained for the direct 
inversion method thus reflects the physical characteristics 
of the criterion adopted. Incidentally, this particular case 
shows that while computing the distribution of misfit 
residuals based on the reasonable assumption of a 
Gaussian distribution of angular data uncertainties, one 
does not just obtain what is put in; the distribution of this 
method is clearly non-Gaussian contrary to the data 
uncertainty distribution. 

We determined the variations of stress tensors accord- 
ing to data dispersion and found the appropriate filtering 
misfit angles which allow us to recover the assumed stress 
tensor. Under the conditions adopted in this paper, the 
stress solutions depend on the dispersion parameters, but 
are stable and vary little for c >4%. Considering the 
minimization conditions of the angular minimization 
functions, it is of course preferable to adopt fault-slip 
data of smaller angular misfits. However, our conclusion 
is that the filtering misfit angles between 45” and 90” are 

better to recover the assumed stress tensor concurrently, 
comprising as many meaningful fault-slip data as 
possible (more than almost 90% of all fault-slip data for 
c > 3%), although the stress solutions are governed 
principally by the data dispersions (Fig. 7). 
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